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Abstract—IoT devices are usually connected wire-
lessly to the Internet. Due to the low energy resources,
special new protocols are used. One such protocol is
Long Range Wide Area Network (LoRaWAN). It was
developed with the aim of sending small amounts of
data to the Internet as energy-efficiently and robustly
as possible. Transmission security played a major role
in the specification of LoRaWAN. Wireless LoRaWAN
devices communicate via radio with gateways, which
send the data packets to a network server connected
to the Internet. The network server has interfaces to
be connected to existing IoT platforms and applica-
tions. Wireless transmission allows a potential attacker
many additional attack vectors. We assess the security
mechanisms defined in the LoRaWAN specification and
describe own research to show, whether those security
mechanisms are sufficient. For this, we explain typical
attacks on LoRaWAN radio-based networks. We further
show which precautions are necessary not to undermine
these measures and whether additional security mea-
sures beyond the specification may be necessary. An
important contribution of this paper is to present the
key features of the LoRaWAN specification in a more
generally understandable manner.

Index Terms—LoRaWAN, IoT Security, Network, Pro-
tocol
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I. Introduction.

There are a number of competing protocols and
procedures designed specifically to connect IoT devices
to the Internet. When deciding on a protocol, various
aspects must be taken into account. For an application
in the field of building automation, we were looking
for a technology that makes it possible to transfer
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data securely against being spied on by third parties
and to prevent attackers from feeding false control
commands into the data transmission. LoRaWAN [12]
is an evolving protocol and technology specifically
designed to connect small devices with the Internet.
Typical applications include 10T technology, industrial
automation, meter reading transmission and remote
control. LoRa is the underlying radio technology. It
was developed to achieve reasonable ranges with low
error rates and minimal energy consumption even in
urban areas. It is able to transmit small data packets
over long distances of typically 2 to 10 km with low
bandwidth up to 125 kbit/s.

A. Motivation.

Depending on the application, sensitive data can be
transmitted or safety-critical processes can be trig-
gered remotely. Every new technology raises the ques-
tion of how secure it is. We deal in detail with all
phases from the development of an application via the
registration of devices in a LoRaWAN to the ongoing
operation and decommissioning of devices.

In this publication we describe and review the secu-
rity mechanisms of LoRaWAN during the entire lifetime
of a system of IoT devices, network and server-based
application. We check whether the security mecha-
nisms defined in the LoRaWAN specification are suf-
ficient, which precautions are necessary not to under-
mine these measures and whether additional security
measures may be necessary.

B. Potential for attackers.

Devices based on LoRa are inexpensive to procure.
This applies to both mobile devices and gateways to the
Internet. This greatly reduces the costs for a potential
attacker who wants to access via the radio interface. In



addition, a complete LoRaWAN system consists of var-
ious complex components. Intermediary components
between the mobile node and the actual server-based
application are often provided by third parties who
forward the data in both directions. LoRaWANs are
a worthwhile target for attackers for a number of
reasons:

« The cost of sending and receiving messages is ex-
tremely low. End-devices are freely available. The
radio frequencies utilized can be used by anyone
without a license.

e Due to the nature of a radio-based protocol and
due to the ranges in urban areas, potentially many
LoRaWAN subscribers can be reached from a well
chosen location. An attacker has potential access
to the radio traffic of several stations.

¢ The risk of being discovered and tracked is neg-
ligible for the attacker. The risk becomes almost
zero if the attacker just listens.

« LoRaWAN can potentially be used for a number of
security-critical applications in which an attacker
might be interested.

This list shows that LoRaWANSs should not be built
and used thoughtlessly.

C. Further structure of this paper.

In Section II we give a short overview of the general
structure of a LoRaWAN. We introduce the entities
involved in the communication and show which inter-
faces exist between them. Section III explains the basic
security features in all main phases of the commu-
nication process as provided in the LoRaWAN stan-
dard. The cryptographic methods used in LoRaWAN
are described in brief in Section IV. We have outlined
a number of possible attacks and planned defense
measures in Section V. We present a review of other
publication regarding the security of LoRaWAN in Sec-
tion VI before we conclude our findings in the final
section of this paper.

II. General Structure of a LoRaWAN.

Figure 1 depicts the basic minimal architecture of
a LoRaWAN backend infrastructure. Figure 2 shows a
more complex setup which allows roaming end-devices.

The End-device is a potentially mobile device carry-
ing sensors or actuators. It is connected with the Net-
work Server via the radio gateway. The radio gateway
is fully transparent when we focus on security of Lo-
RaWAN communication. The Network server controls
access to the network and ensures that data telegrams
are sent to the respective correct Application server.
The Join Server helps to create non-repeating nonces
that are important for cryptographic processes. The
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Fig. 1. LoRaWAN Network Reference Model (NRM), End-Device at
home - from [2].
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Fig. 2. LoRaWAN Network Reference Model (NRM), roaming End-
Device - from [2].

Application Server contains the program logic and is
connected to the Internet in IoT scenarios.

Figure 3 shows a typical LoRa-enabled device, in
particular a developer board with an ESP32 CPU, WiFi,
Bluetooth, several GPIOs, a Micro USB interface and a
small OLED display in addition to the LoRa transceiver.
Sizes of actual devices may be much smaller.
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Fig. 3. A typical LoRa-enabled device for development.



LoRaWAN defines three device classes (see [12] sec-
tion 2.1). These are Bi-directional end-devices (Class
A) that are not always online and ready to receive
messages only after they have transmitted own pack-
ets, Bi-directional end-devices with scheduled receive
windows (Class B) that are ready to receive at sched-
uled times, and Bi-directional end-devices with max-
imal receive windows (Class C) which are almost
always available for receiving transmissions. For Class
A devices, communication always starts from the client;
for Class B and Class C devices, communication can
also start from the network server. This is used, for
example, where actuators need to be controlled with
commands sent by an Application Server. All end-
devices must implement Class A features. The choice of
the specific device class has no influence on the safety
mechanisms.

III. Security during typical phases of communication.

In a typical scenario the end-device will initiate
the communication. Uplink messages are sent by end-
devices to the Network Server relayed by one or
many gateways. Following each uplink transmission
the protocol requires end-devices to open two short
receive windows. Each downlink message is sent by the
Network Server to only one end-device and is relayed
by a single gateway during those receive windows.

LoRaWAN distinguishes between 8 different MAC
message types: Join-request, Rejoin-request, Join-
accept, unconfirmed data up/down, confirmed data
up/down, and proprietary messages (see [12] section
4.2.1).

A. Initial end-device activation.

In order to be able to participate in a LoRaWAN
network, each end-device must be personalized and
activated. During personalization, two device specific
keys are assigned and stored to the end-device ([12]
section 6.1.1.3).

The NwkKey or actually the session keys derived
from it are used to encrypt the communication between
the end-device and the Network server and to protect it
from changes using the Message Integrity Code (MIC).
The NwkKey is device specific and must be stored on
the end-device and in the Network server. The unique-
ness of the NwkKey for specific end devices can be
abandoned by the network operator in favor of simpli-
fied network participation (starting with the LoRaWAN
1.1 specification). In this case, the NwkKey will only
be used as a participation grant for the network. The
integrity and confidentiality of application data is then
ensured exclusively via the AppKey. In a community
network such as the widespread The Things Network
[7], potentially many people know the NwkKey.

For this reason, another key was introduced to pro-
tect the privacy of payload. The AppKey and the ses-
sion key derived from it are used to encrypt and secure
the data between the end device and the application
end-to-end. This key is also unique to each end-device.

An end-device can be activated in two ways, either
via Over-T'he-Air Activation (OTAA) or via Activa-
tion By Personalization (ABP). The latter procedure
is not considered in detail here, since all necessary
session keys are stored directly in the end-device. The
subsequent encryption and authentication of the user
data is identical for both methods.

When a device joins a network through over-the-
air activation, the NwkKey is used to derive the
FNwkSIntKey (Forwarding Network session integrity
key, [12] section 6.1.2.2), SNwkSIntKey (Serving Net-
work session integrity key, [12] section 6.1.2.3) and
NwkSEncKey (Network session encryption key, [12]
section 6.1.2.4) session keys, and AppKey is used to
derive the AppSKey (App Session Key, [12] section
6.1.2.5). Figure 4 shows how session keys are being
derived from the two pre-configured keys NwkKey and
AppKey.

The Join-request and Join-accept handshake is de-
picted in Figure 5. The end-device sends a Join-Request
to the network. After this request has been received
from the network, it is forwarded to the corresponding
network server. The DevEUI is used by the network
to determine the corresponding Network Server. The
Join-Server is determined using the JoinEUI in the Join-
request. The Join-Server supplies a JoinNonce that is
used only once in an end-device’s lifetime for the par-
ticular Joint-request that is currently being processed.

To join a network, an end-device needs the following
information beside the two device root keys (AppKey
and NwkKey) ([12] section 6.1.1):

e JoinEUI The JoinEUI is a global application ID
in IEEE EUI-64 address space [4] that uniquely
identifies the Join Server for a particular end-
device wishing to join the network. The Join Server
maintains device specific counters and assists in
the derivation of keys.

« DevEUI The DevEUI is, as the name suggests,
a global end-device ID in IEEE EUI-64 address
space that uniquely identifies the end-device. Cur-
rently, there is no mechanism to ensure unique-
ness. Hence, the network provider has to maintain
its own list. Recurring DevEUIs in other networks
cause no problems.

« DevNonce DevNonce is a counter that starts at 0
when the device is first turned on and incremented
on every join-request. A DevNonce value shall
never be reused for a particular JoinEUI value. If
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Fig. 5. OTAA join-request and join-accept.

the device can be power-cycled, DevNonce should
be persistent (in a non-volatile memory). Resetting
DevNonce without changing JoinEUI causes the
network server to reject the device’s join-requests.
For each device, the network server tracks the last
DevNonce value used by the device and ignores
join-requests if DevNonce is not incremented.

The Network Server derives a JSIntKey from the
NwkKey and the DevEUI. JSIntKey is used to calcu-
late the Message Integrity Check (MIC) of Join-accept

messages’.
The Join-accept message contains the following in-
formation ([12] section 6.2.3):

« JoinNonce The JoinNonce is a device-specific
counter value (which never repeats itself) provided
by the Join Server and used by the end device to
derive the session keys FNwkSIntKey, SNwkSIn-

1Please note that there are differences in the encryption and MIC
of Join-accept messages, depending on whether they were sent in
response to Join-requests or Rejoin-requests.



tKey, NwkSEncKey and AppSKey. JoinNonce is in-
creased with every Join-accept message.

« home NetID The field home NetID of the Join-
accept message corresponds to the Netld of the
device’s Home network.

o« DevAddr The DevAddr consists of 32 bits and
identifies the device in the current network. The
DevAddr is assigned by the Network server of the
end-device.

The following session keys are derived from pre-
shared keys and other information as stated below and
are used while communicating after activation ([12]
section 6.1.2):

o FNwkSIntKey The FNwkSIntKey is a network
session key specific to the end-device. It is used
by the end-device to calculate the MIC or part
of the MIC of all uplink data messages to ensure
data integrity. The FNwkSIntKey is derived from
NwkKey, JoinNonce, NetID, and DevNonce.

« SNwkSIntKey Serving Network session integrity
key. The SNwkSIntKey is a network session key
specific to the end-device. It is used by the end-
device to verify the MIC of all downlink data mes-
sages to ensure data integrity and to calculate half
of the uplink messages MIC. The SNwkSIntKey
is derived from NwkKey, JoinNonce, NetID, and
DevNonce.

« NwkSEncKey The NwkSEncKey is a network ses-
sion key specific to the end-device. It is used to
encrypt and decrypt uplink and downlink MAC
commands that are transmitted as payloads. In
LoRaWAN 1.0 which does not define a separate
AppKey the NwkSEncKey was also used to en-
crypt data payload for uplink and downlink. The
NwkSEncKey is derived from NwkKey, JoinNonce,
NetID, and DevNonce.

o AppSKey The AppSKey is an application and
device-specific key for the end-device. It is used
by both the Application server and the end-
device to encrypt and decrypt the payload field
of application-specific data messages. Application
payloads are encrypted between the end-device
and the Application server, but they are protected
against alteration (integrity) only in a hop-by-hop
manner: one hop between the end-device and
the Network server and the other hop between
the Network server and the Application server.
The AppSKey is derived from AppKey, JoinNonce,
NetID, and DevNonce.

Secure provision, storage and use of root keys
NwkKey and AppKey and all session keys derived from
them on the end device and the back end are an
essential component of the overall security of the so-

lution. The corresponding implementation is not speci-
fied by the LoRaWAN specification. However, external,
tamper-proof keystores are proposed by the specifica-
tion.

B. Rejoin.

A device can periodically send a rejoin-request mes-
sage. This enables the back end to periodically initialize
a new session context for the end-device. For this pur-
pose, the network responds with a join-accept message.

There are three different rejoin-request messages
defined by the standard ([12] section 6.2.4):

« Type O Resets all radio parameters including
DevAddr and all session keys. The rejoin-request
contains NetID and DevEUI. Additionally a counter
RJcountO is included in the request.

« Type 1 Restores a lost session context similar
to an initial join-request. The rejoin-request con-
tains JoinEUI and DevEUI. Additionally a counter
RJcountl is included in the request.

« Type 2 Resets all session keys but no radio pa-
rameters. The rejoin-request contains NetID and
DevEUI. Additionally a counter RJcountO is in-
cluded in the request.

The following Figures 6 and 7 illustrate the message
handshakes after rejoin-requests for all three types of
rejoins. Please note that RJCountO or RJCountl replace
the DevNonce in all requests and key derivation. Type
0 and Type 2 requests are handled entirely by the net-
work server. Type 1 requests require the Join Server to
provide a new JoinNonce while the JoinNonce remains
unchanged for Type 0 and Type 2. On its own discretion
the network server can either answer with a join-accept
message or a regular downlink frame.

C. Data up and downlink.

All end-devices (Class A, B, C, see section II) can
send uplink frames at any time, but need to respect
a very low duty cycle required by the standard. End-
devices are open to receive downlink frames shortly
afterwards. Frames can contain data, Media Access
Control (MAC?) commands, or both. If a data frame
carries a payload, the payload itself (field FRMPayload)
must be encrypted. The encryption scheme used is
based on the generic algorithm described in IEEE
802.15.4/2006 Annex B [1].

The AppSKey will be used for encryption of payload
as mentioned in section III-A and shown in Figure 8.

2Please note, that MAC does not mean the cryptographic term Mes-
sage Authentication Code here. The LoRaWAN standard [12]uses the
term Message Integrity Code for cryptographic purposes. Actually
MIC values are the first 4 bytes of a CMAC. See section IV.



Network

End-device
Server

ReJoin-re
quest type
(NetID, DevEUI, R?Coaug;(]z)

MIC calculated

RICount0 are ignored.

with SNwkSIntKey
Join-requests with unchanged
Not encrypted J

Network Server re-calculates
device specific JSIntKey.

]o'mfaccept adr,
Nonce Home,Net!D,Cgavslt\)j
UO‘SL Semhgs, RrxDelay,

Encrypted with

MIC calculated JSEncKey

with JSIntKey

Network server re-calculates

End-device re-calculates
(derives) FNwkSIntKey,
SNwkSIntKey, NwkSEncKey
and AppSKey

(derives) FNwkSIntKey,
SNwkSIntKey, NwkSEncKey

Fig. 6. OTAA rejoin-request type 0 or type 2 and join-accept.

End-device NSeetrlv(:;k
ReJoin.re

(J0INEUT, payin®st type 1

VEUL RICounty)

Not encrypted " H

MIC calculated
with JSIntKey

Join Server Aoplication
Server

Join Server Aoplication
Server

(DevEur)

< (JoinNonce)

Join-accept
DevAddr,
Nonce, Home_NetID, D&
chL Settings, RxDelay, CFList))

Encrypted with

N
MIC calculated JSEnckey

with JSIntKey

End-device re-calculates
(derives) FNwkSIntKey,
SNwkSIntKey, NwkSEncKey
and AppSKey

ReJoin-,
(oinEuy, "equest typg

DevEur, Ricoynt;
MIC calculated

with JSIntKey
< i downlink frame
mal downlin
(:\:;iroring Re]om—request)

New JoinNonce

Network server re-calculates
(derives) FNwkSIntKey,
SNwkSIntKey, and NwkSEncKey

____— Rejoin-request ignored

Fig. 7. OTAA rejoin-request type 1 and join-accept.

Message integrity is not guaranteed on an end-to-end
basis, only in two steps, the first MIC step between end-
device and network server, The second step between
network server and application server is considered to
be out of scope for this paper as it relies on standard-
ized network security principles and implementations
such as SSL/TLS for example.

The MIC (see [12] section 4.4) of downlink frames
is calculated with the AES-128 CMAC algorithm as
described in RFC4493 [13]. The SNwkSIntKey is used
to sign a message block containing some constants, two
counters ConfFCnt and (AFCntDwn or NFCntDown),
the DevAddr, and the length of this message.

The fields in this message block have the following

meaning:

+« ConfFCnt For downlink frames in reply to con-
firmed uplink frames, ConfFCnt is the frame
counter value modulo 2'° of the “confirmed” uplink
frame that is being acknowledged. In all other
cases ConfFCnt = 0x0000.

« DevAddr The DevAddr is assigned by the Network
server of the end-device at the time of activation
over the air or pre-assigned during Activation by
Personalization.

« AFCntD(0)wn® Frame counter for downlink di-
rection (towards the end-device). This counter is

3Spelled with and without ‘o’ in [12].
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used when the end-device works in LoRaWAN1.1
mode for all FPort values except 0. (FPort enables
application-specific handling of received frames.
An FPort value of 0 indicates that this frame con-
tains MAC commands only. Frames with an FPort
value of 0 shall be processed by the LoRaWAN
implementation, not the application).

o NFCntDown Frame counter used similar to AFC-
ntDown, when FPort value is 0 or FPort is not
present (according to LoORaWAN1.0 specification).

The MIC of uplink frames is calculated with a slightly
more complicated process. This MIC contains of two
separately calculated blocks. The first block (BO) con-
tains some constants, the DevAddr, and the frame
counter FCntUp. The second block (B1) contains some
constants, the ConfFCnt, TxDr, TxCh, the DevAddr, the
frame counter FCntUp and a value representing the
actual length of the message.

The fields in these two message block have the
following meaning:

« FCntUp (BO and B1) Frame counter for uplink

frames.

« DevAddr (BO and B1) see section III-C.

e ConfFCnt (B1) see section III-C.

e TxDr (B1) TxDr is the data rate used for this

transmission.

¢ TxCh (B1) TxCh is the channel used for this trans-

mission.

Block BO and the message are integrity pro-
tected with FNwkSIntKey as follows: cmacF =
aes128 cmac(FNwkSIntKey, BO | msg). Block B1 and
the message are integrity protected with SNwkSIntKey
as follows: cmacS = aesl128 cmac(SNwkSIntKey, Bl |
msg) (see section III-A for a description of how these
session keys are derived).

The 4 byte MIC is calculated by concatenating the
first two bytes of cmacS and the first two bytes of

cmacF.

MICs are calculated after payload encryption. This
allows the network server to check the integrity with-
out the help of any other entity, and hence, without
knowing the plaintext of the payload.

IV. Cryptography in LoRaWAN.

We assume that the basic cryptography used in
LoRaWAN is sufficiently secure. These include the
AES128 Cipher-based Message Authentication Code
(CMAC), AES128 Counter with CBC-MAC (CCM), and
AES128 Electronic Codebook (ECB). However, without
thorough examination we cannot presume that the pre-
conditions of these cryptographic procedures, which
are necessary for a secure working mode, are fulfilled.

The simplest of the encryption modes is the Elec-
tronic Codebook (ECB) mode. The message is divided
into blocks and each block is encrypted separately.
Identical message blocks are also encrypted in the
same way. An exchange of blocks in the ciphertext
leads to the same exchange of the blocks in the de-
crypted message. An error in a block only affects the
decryption of this block. The use of ECB mode is
therefore not recommended, unless a single message
block is to be encrypted only once [10]. Figure 9 shows
ECB schematically.

Plaintext Plaintext Plaintext

[ITTTTITTITT] [ENENEEREEEENE] [ITTTTITIITT]
Key block cpher Key block cupher Key block cpher
encryption encryption encryption
ITTTTTTIITT] [ENENEENERENNE] [ENNNEEEEEEEEE]
Ciphertext Ciphertext Ciphertext

Fig. 9. Encryption in ECB mode.

The Counter with CBC-MAC mode (CCM) is an
operating mode for block ciphers developed by Russ



Housley, Doug Whiting and Niels Ferguson. CCM turns
a block cipher into an authenticated encryption pro-
cess designed to guarantee both confidentiality and
integrity. RFC3610 [15] specifies CCM only for block
ciphers with a block length of 128 bits, such as AES.
With CCM, an initialization vector (IV) must not be
used twice with the same key. This is because CCM is
derived from Counter Mode (CTR), and CTR is a stream
cipher. Figure 10 shows CTR schematically. A proof of
security under certain circumstances can be found in
[9]. LoRaWAN uses a slightly modified CCM* as defined
in [1].

Counter
00000000

Nonce
c59bcf35...

Counter
00000002

Nonce
c59bcf35...

Counter
00000001

Nonce
c59bcf35..

[EEEEENENEEEEN] [ENEEEEEEEEEEN] [EEEEEEEEENEEN]
Key block C|p_her Key block ciplher Key block mgher
encryption encryption encryption
Plaintext —»? Plaintext ———> Plaintext ———>
[ENEEEEEEEEEEN] [EEEEEEEENEEEN]
[ENENEEEEEENEN] [EEEEEEEEEEEEN]
Ciphertext Ciphertext Ciphertext

Fig. 10. Counter mode encryption.

The special feature of Counter Mode in comparison
to other operating modes is the fact that the initializa-
tion vector consists of a new random number (Nonce)
to be selected for each cipher frame, linked to a
counter, which is incremented with each further block.
The link can be made, for example, by concatenation
(append), addition or XOR.

Figure 11 shows the Cipher Block Chaining (CBC)
Mode. For integrity checks (CBC MAC) the initializa-
tion vector is set to zero and the last block encrypted
with CBC is considered the Message Authentication
Code (MAC) [5].

Plaintext Plaintext Plaintext

[ENNEEEEENEEEE] [ENNEEEEENEEEE] [ENNEEEENNEEEE]
Initialization Vector (IV)
MMM —9 —————® ——————®
Key block cpher Key block C|p_her Key block CIp_her
encryption encryption encryption
[ENEEEEEENEEEE] [ENNEEEEENEEEE] [ENNEEEEENEEEE]
Ciphertext Ciphertext Ciphertext

Fig. 11. Encryption in CBC mode. If CBC is used for integrity
protection, the initialization vector is set to zero and the last block
encrypted with CBC is appended as MAC (the so-called CBC-MAC or
CBC residual value) to the original unencrypted message and sent
together with this MAC [5].

The core of the CMAC algorithm is a variant of CBC-
MAC proposed and analyzed by Black and Rogaway
under the name XCBC [6][8].

V. Attacks

For our investigation we assume the following at-
tacker profiles:

e Attacker A is able to eavesdrop the entire Lo-
RaWAN radio traffic by placing it’s own receiver
between end-device and gateway.

« Attacker B has the capabilities of attacker A and
can additionally send any frame at any time.

« Attacker C is able to analyze individual end-devices
(not all of them) and read the keys stored in them.

o Attacker D knows the NwkKey, but not the AppKey,
which is typical for a global network such as The
Things Network.

o Attacker E is able to freely manipulate the en-
tire backend infrastructure (network server, join
server, radio gateway), but not the application
server.

We do not consider attackers that are able to ma-
nipulate the application server. That would be out of
scope for this paper, which looks at LoRaWAN. On the
other hand, it would simply be impossible to protect
against this attacker with the means of LoRaWAN. Fur-
thermore, a denial of service attack is trivially easy to
perform for most radio procedures and is also ignored
in this paper.

We assume the following aims of attackers:

« Read encrypted payload between end-device and

application server.

« Sending meaningful or meaningless fake messages
to an application server.

« Participate in the network without permission. For
example, if the network is a paid network, a po-
tential attacker wants to gain free access to the
network and the connected application servers.

« Profiling of end-devices. An attacker wants to find
out when certain end-devices are active and where
they are at that time.

« Misplacing end-devices. An attacker wants end-
devices to appear at a wrong location.

A. General attack vectors and countermeasures.

In this section we look at attack vectors that we
have collected in a brainstorming process. We show
which countermeasures are planned according to the
standard.

1) Attacks on key material.: An obvious possibility
is to spy out secret key material which is stored in
end-devices. NwkKey and AppKey are generated and
stored in each end-device during manufacturing or on
provisioning. Both keys are specific to a particular end-
device, but the NwkKey is often sacrificed to allow
easy access to a network. In these cases, NwkKey is
shared by all end devices and the AppKey provides
eavesdropping security between the end-device and
the application. In the event that the session keys
were generated in advance as part of an Activation By



Personalization (ABP) process, the very same applies
to the session keys (see section III-A).

2) Attacks on counters and nonces.: If the session
keys were generated within the OTAA, the session keys
are generated from NwkKey and AppKey and a series
of counters and nonces. As shown in Section IV, it
is important for the cryptographic methods AES-CCM
and AES-CMAC that counter and initialization vectors
are not repeated. The Join Server guarantees that the
JoinNonce is not repeated, the end-device guarantees
that the DevNonce or the RejoinCounters RJCount0O
and RJCountl are not repeated.

Due to the length of the counters and the slowness
of the transmissions, it is practically hopeless for an
attacker to wait for a repetition of a counter value. In
addition, at least according to the protocol definition,
it is forbidden for counters to be repeated during the
lifetime of end-devices. Hence, attackers would have
to provoke a repetition of a counter. This attack can
only be carried out by the attackers we refer to as
Attacker B in Section V. Since the counters themselves
cannot be determined by radio traffic due to strong
encryption, this attack also requires the ability to read
or manipulate the corresponding counters either on the
end-device or the network server. An attacker who can
do this, however, can save himself an attack on the
radio procedure.

Especially problematic would be the repeated use of
the CCM* encryption method with the same key, nonce
and counter (see Sections III-A and IV). The values
of the frame counter may only be used once in all
transmission with the CCM* operating mode. CCM* is
being used for data up and downlink messages. There-
fore the reinitialization of an ABP end-device frame
counter is prohibited. ABP devices must use a non-
volatile memory to store the frame counters, since ABP
devices use the same session keys throughout their
lifetime. Therefore, it is recommended in the standard
to use OTAA devices for higher security applications,
which re-generates the session keys at every network
join or rejoin.

3) Replay of frames.: Attackers of category B (re-
ferred to as Attacker B in Section V) can send any
number of messages. In view of the fact that trans-
missions are cryptographically secured, the question
arises whether a repetition of a data packet can nev-
ertheless have negative effects on authenticity and
integrity. Data packets are protected against replay
attacks by FrameCounter. (Re)JoinRequests are pro-
tected by either JoinNonce or R]JCountQ respectively
RJCountl.

A special form of this attack vector would be if an
attacker records a data frame in one location and plays

it back in another location in the reception area of
another network server.

4) Causing rejoin.: With the help of rejoin requests,
corrupted or fake end-devices could require a renego-
tiation of the session keys. Rejoin requests are sent
unencrypted, but are protected against manipulation
by SNwkSIntKey or JSIntKey.

5) Shortening, lengthening, and bitwise manipula-
tion of message frames.: Unlike a replay attack or a
classic man-in-the-middle attack, this attack is about
manipulating data frames during transmission. For ex-
ample, a transmission can be extended by a few bits.
The modulation method used in LoRa and the serial
transmission of the bits would not prevent this. It would
also be possible to change individual bits by means
of targeted, stronger emissions or to suppress them
by noise. However, due to the signature procedures
used, the attacker would have to be in possession of
the signing key or session key used for the respective
message type.

6) Profiling: It is in the nature of things that Lo-
RaWAN end-devices send data at least occasionally.
The location of the devices can be determined dur-
ing transmission. An attacker can use three receivers
with known location and trilateration to estimate the
location based on the distance-dependent field strength
(specified as RSSI for Received Signal Strength Indica-
tor).

Especially in LoRaWAN installations with many radio
gateways this works very well. Uplink messages are
sent by end-devices to the Network Server relayed by
one or many gateways. The operator of an application
server receives the field strength measurements virtu-
ally free of charge. In the global LoRaWAN The Things
Network, which has already been mentioned several
times, such a report looks like this:

{
"time": "2018-06-03T08:13:32.680499764Z",
"frequency": 867.9,
"modulation": "LORA",
"data_rate": "SF7BW125",
"coding_rate": "4/5",

"gateways": [
{
"gtw_id": "eui-b827ebfffe2a509f",
"timestamp": 2996109116,

"time": "2018-06-03T08:13:32.656102Z",
"channel": 7,

"rssi": -79,

“snr": 8.2,

"latitude": 54.085,

"longitude": 12.13314,
"altitude": 40



{
"gtw_id": "eui-b827ebfffe37dc3b",
"timestamp": 2322081132,
“time": "2018-06-03T08:13:32.65646Z",
"channel": 7,
"rssi": -37,
"snr": 8.8,
"latitude": 54.09296,
"longitude": 12.09826,
"altitude": 30

}

The same transmission was received by two radio
gateways. Both gateways have inserted a precise time
stamp in addition to the aforementioned RSSI value. If
the time stamp comes from a high-precision clock, such
as a GPS receiver, position data can also be derived
from transit time measurements. Many LoRa gateways
already contain a GPS receiver to deliver these time
stamps.

VI. Critical consideration of other publications
regarding the security of LoRaWAN.

In this section we give an overview of other publica-
tions on the topic "Security of LoRaWAN" and review
some of them.

The authors of the well cited [11] claim that there is
a security hole during the join process. The authors
assume wrong assumptions and obviously have not
read the standard. For example, they claim that join
accept messages are encrypted with the AppKey in
their Figure 1. In their section II-B they completely hide
the role of the join server to prevent replay attacks.

A better overview of the security of LoORaWAN can
be found in [3]. The authors also work on the basis of
version 1.1 of the standard. They also explain the im-
portance of secure storage of the NwkKey and AppKey
keys and explain replay and wormhole attacks. Like
us, the authors were not able to show a concrete gap
either.

A detailed statistical analysis of the probability of
collisions of nonces and counters during the Join pro-
cedure can be found in [14]. The problems shown are
not due to the standard, but to the implementation of
random number generators in the chipsets frequently
used for LoRa.

VII. Conclusion.

After a detailed examination of the LoRaWAN stan-
dard and other publications on this topic, we found no
obvious security gap. Of course, this does not mean

that they do not exist. It could just be an inability
of ourselves. Nevertheless, we do not currently see
any concerns when using LoRaWAN, as long as the
safety measures already mentioned in the standard are
observed and implementations are carefully "crafted".
We consider LoRaWAN to be suitable for our needs in
an IoT environment.
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